Order Structures on Böhm-Like Models

نویسندگان

  • Paula Severi
  • Fer-Jan de Vries
چکیده

We are interested in the question whether the models induced by the infinitary lambda calculus are orderable, that is whether they have a partial order with a least element making the context operators monotone. The first natural candidate is the prefix relation: a prefix of a term is obtained by replacing some subterms by ⊥. We prove that six models induced by the infinitary lambda calculus (which includes Böhm and Lévy-Longo trees) are orderable by the prefix relation. The following two orders we consider are the compositions of the prefix relation with either transfinite η-reduction or transfinite η-expansion. We prove that these orders make the context operators of the η-Böhm trees and the∞ηBöhm trees monotone. The model of Berarducci trees is not monotone with respect to the prefix relation. However, somewhat unexpectedly, we found that the Berarducci trees are orderable by a new order related to the prefix relation in which subterms are not replaced by ⊥ but by a lambda term O called the ogre which devours all its inputs. The proof of this uses simulation and coinduction. Finally, we show that there are 2 unorderable models induced by the infinitary lambda calculus where c is the cardinality of the continuum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The infinitary lambda calculus of the infinite eta Böhm trees

In this paper, we introduce a strong form of eta reduction called etabang that we use to construct a confluent and normalising infinitary lambda calculus, of which the normal forms correspond to Barendregt’s infinite eta Böhm trees. This new infinitary perspective on the set of infinite eta Böhm trees allows us to prove that the set of infinite eta Böhm trees is a model of the lambda calculus. ...

متن کامل

Regular Böhm trees

Böhm trees are the natural infinite generalisations of normal forms in pure λ-calculus. They arose from the work of Böhm on separability (Böhm 1968), and were first identified by Barendregt, who devotes chapter 10 of his book (Barendregt 1980) to their study, and relates denotational models such as D∞ to appropriate quotients over Böhm trees. There is however no generally agreed presentation of...

متن کامل

Böhm-Like Trees for Term Rewriting Systems

In this paper we define Böhm-like trees for term rewriting systems (TRSs). The definition is based on the similarities between the Böhm trees, the Lévy-Longo trees, and the Berarducci trees. That is, the similarities between the Böhm-like trees of the λ-calculus. Given a term t a tree partially represents the root-stable part of t as created in each maximal fair reduction of t. In addition to d...

متن کامل

Beyond first order logic: From number of structures to structure of numbers: Part II

We study the history and recent developments in nonelementarymodel theory focusing on the framework of abstractelementary classes. We discuss the role of syntax and semanticsand the motivation to generalize first order model theory to nonelementaryframeworks and illuminate the study with concrete examplesof classes of models. This second part continues to study the question of catecoricitytrans...

متن کامل

$xwrpdwlff'lvfryhu\dqgg$jjuhjdwlrqqrii&rpsrxqgg 1dphvviruuwkhh8vhhlq.qrzohgjhh5hsuhvhqwdwlrqvv

Automatic acquisition of information structures like Topic Maps or semantic networks from large document collections is an important issue in knowledge management. An inherent problem with automatic approaches is the treatment of multiword terms as single semantic entities. Taking company names as an example, we present a method for learning multiword terms from large text corpora exploiting th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005